The generator matrix 1 0 1 1 1 X+2 1 1 0 1 1 X+2 1 1 0 1 1 X+2 1 1 1 1 0 1 1 1 1 X+2 0 1 1 1 1 0 1 X+1 X+2 1 1 0 X+1 1 X+2 3 1 0 3 1 X+2 X+1 1 0 X+2 X+1 3 1 0 X+1 X+2 3 1 X 0 X+2 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 2 2 0 0 2 2 2 0 2 2 2 0 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2 0 0 2 2 0 2 2 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 2 2 0 2 2 0 2 0 2 0 0 2 2 0 0 0 2 0 2 2 2 0 0 0 0 0 2 0 0 0 2 0 0 2 0 2 0 0 2 2 2 2 2 0 0 0 2 2 2 2 0 2 2 2 0 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 2 2 2 2 0 2 0 0 2 2 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 0 2 2 2 2 0 0 2 2 2 2 0 2 0 2 0 0 0 2 0 0 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 2 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 generates a code of length 33 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 24. Homogenous weight enumerator: w(x)=1x^0+65x^24+8x^25+56x^26+64x^27+393x^28+224x^29+868x^30+448x^31+1714x^32+560x^33+1620x^34+448x^35+987x^36+224x^37+268x^38+64x^39+135x^40+8x^41+4x^42+27x^44+5x^48+1x^52 The gray image is a code over GF(2) with n=132, k=13 and d=48. This code was found by Heurico 1.16 in 1.4 seconds.